RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2019

SECOND YEAR [BATCH 2018-21]

COMPUTER SCIENCE (Honours) Paper : III [Gr- A]

Date : 11/12/2019 Time : 11 am – 1 pm

<u>Unit-I</u>

Full Marks: 40

		<u>Omt-1</u>			
Answer <u>any one</u> question from question nos. 1 & 2:					
1.	a)	Draw the Hass-diagram for poset $(P(S), \subseteq)$, where P(S) is the power set of the set			
		$S = \{1, 2, 3\}.$	(3)		
	b)	Show that if any five integers from 1 to 8 are chosen, then at least two of them will have a sum 9.	(2)		
2.	A c sho	certain type of missile hits its target with probability $p = 0.3$. Find the number of missiles that uld be fired so that there is at least an 80% probability of hitting the target.	(5)		
Answer <u>any two</u> questions from question nos. 3 to 6: [2×3					
3.	a)	State and prove the "Pigeon Hole Principle".	(3)		
	b)	There are six processes to be assigned to three processors. In how many ways can you distribute these processes over processors such that no processors will be idle? A processor can accept multiple processes but a single process is to be allocated by a single processor only.	(3)		
	c)	Solve the recurrence relation together with the given initial condition $a_n = 5a_{n-1} - 6a_{n-2}$ for			
		$n \ge 2, a_0 = 1, a_1 = 0.$	(4)		
4.	a)	Find the recurrence relation and give initial condition for the number of bit strings of length n that do not contain the pattern 111.	(4)		
	b)	Use generating function to solve the recurrence relation $a_n - a_{n-1} = 6 a_{n-2}$, $n \ge 2$ with initial			
		conditions $\mathbf{a}_0 = 1$, $\mathbf{a}_1 = 1$.	(4)		
	c)	What is Quasigroup?	(2)		
5.	a)	Prove that $(Q, +, .)$ is a commutative ring with unity, where Q is the set of rational numbers.	(5)		
	b)	A multiple choice question has 10 questions with 3 options for each question. What is the probability that a student gets at least 7 questions correct by random guessing?	(5)		
6.	a)	In a community, 40% of families own a dog and 30% of families own a cat. Additionally, it is known that of those families that own a dog, 15% own a cat as well. Given a family owns a cat, what is the probability that it owns a dog?	(5)		
	h)	A life insurance salesman sells on average 3 life insurance policies per week. Use poisson's	(3)		
	0)	i) Some policies	(5)		

- ii) 2 or more policies but less than 5 policies
- iii) Assuming that there are 5 working days per week, what is the probability that in a given day he will sell one policy?

<u>Unit-II</u>					
Answer <u>any one</u> question from question nos. 7 & 8:					
7.	Exp	plain with example.	(2.5+2.5)		
	i)	Arbitrarily Traceable Graph.			
	ii)	Bipartite Graph			
8.	Pro	ve that a tree with n vertices has n-1 edges.	(5)		
Answer any one question from question nos. 9 & 10:					
9.	a)	What is the size of an r-regular graph with n vertices?	(1.5)		
	b)	Is it possible to exist an Euler trail in an Euler graph? Explain your answer.	(2)		
	c)	Write down Ore's Theorem.	(1.5)		
	d)	Check whether K_5 is planar graph or not.	(2)		
	e)	Show that the number of simple, labelled graph of n vertices is $2^{n(n-1)/2}$.	(3)		
10.	a)	Using appropriate algorithm find the shortest path between vertices a and e from the following graph.	(4)		
		a 2 b 4 7 4 3 c 2 d			
		Show the necessary steps.			
	b)	Write down the difference between Kruskal and Prim's algorithm?	(2)		
	c)	What will be the different number of trees with n vertices?	(2)		
		i) If those are labelled trees.			
		ii) If those are rooted labelled trees.			
	d)	How many different spanning trees are possible from graph K ₅ ?	(2)		

- × -